Snow Particle Characterization. Part B: Morphology Dependent Study of Snow Crystal 3D Properties Using a Convolutional Neural Network (CNN)

Author:

JAFFEUX Louis,Coutris Pierre,Schwarzenboeck Alfons,Dezitter Fabien

Abstract

<div class="section abstract"><div class="htmlview paragraph">This study presents the results of the ICE GENESIS 2021 Swiss Jura Flight Campaign in a way that is readily usable for ice accretion modelling and aims at improving the description of snow particles for model inputs. 2D images from two OAP probes, namely 2D-S and PIP, have been used to extract 3D shape parameters in the oblate spheroid assumption, as there are the diameter of the sphere of equivalent volume as ellipsoid, sphericity, orthogonal sphericity, and an estimation of bulk density of individual ice crystals through a mass-geometry parametrization. Innovative shape recognition algorithm, based on Convolutional Neural Network, has been used to identify ice crystal shapes based on these images and produce shape-specific mass particle size distributions to describe cloud ice content quantitatively in details. 3D shape descriptors and bulk density have been extracted for all the data collected in cloud environments described in the regulation as icing conditions. They are presented under the form of composite size distributions and gathered in size classes, representative of fixed portions of the total mass encountered during the field campaign. The examination of the data shows high discrepancies between crystals of identical size. To solve this issue shape parameters are combined with the morphological analysis to provide comprehensive explanations for the observed snow descriptor variabilities. Finally, the results are summarized under the form of simple habit-specific parametrizations for 3D shape descriptors and bulk density, as functions of crystal size.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3