A Trajectory Mapping Technique for the Visualization and Analysis of Three-Dimensional Flow in Supercell Storms

Author:

Betten Daniel P.1,Biggerstaff Michael I.1,Wicker Louis J.2

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractA visualization technique that allows simultaneous spatial analysis of complex flow behavior from thousands of Lagrangian trajectories is presented and tested using a high temporal and spatial resolution cloud model. The utility of the trajectory mapping technique is illustrated by showing that the source height of the air trajectories is a good proxy to the model-derived equivalent potential temperature. Moreover, the history of the forcing of vertical momentum is related to instantaneous vertical motion patterns shown to be elucidated in the trajectory mapping framework. The robustness of the trajectory mapping method was evaluated by integrating tendency terms and comparing Lagrangian-derived quantities to instantaneous values in the model. The original trajectory maps were also compared to those where the original fields have been filtered and/or the available data frequency are limited to the spatial and temporal scales typical of research radar datasets. The trajectory mapping method was applied to a supercell observed on 29 May 2004 to demonstrate that trajectory behavior for the observed case compares well to those from the higher-resolution numerical model output.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3