Formation of Charge Structures in a Supercell

Author:

Bruning Eric C.1,Rust W. David2,MacGorman Donald R.2,Biggerstaff Michael I.3,Schuur Terry J.1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

3. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Lightning mapping, electric field, and radar data from the 26 May 2004 supercell in central Oklahoma are used to examine the storm’s charge structure. An initial arc-shaped maximum in lightning activity on the right flank of the storm’s bounded weak echo region was composed of an elevated normal polarity tripole in the region of precipitation lofted above the storm’s weak echo region. Later in the storm, two charge structures were associated with precipitation that reached the ground. To the left of the weak echo region, six charge regions were inferred, with positive charge carried on hail at the bottom of the stack. Farther forward in the storm’s precipitation region, four charge regions were inferred, with negative charge at the bottom of the stack. There were different charge structures in adjacent regions of the storm at the same time, and regions of opposite polarity charge were horizontally adjacent at the same altitude. Flashes occasionally lowered positive charge to ground from the forward charge region. A conceptual model is presented that ties charge structure in different regions of the storm to storm structure inferred from radar reflectivity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3