Scanning ARM Cloud Radars. Part I: Operational Sampling Strategies

Author:

Kollias Pavlos1,Bharadwaj Nitin2,Widener Kevin2,Jo Ieng1,Johnson Karen3

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

2. Pacific Northwest National Laboratory, Richland, Washington

3. Brookhaven National Laboratory, Upton, New York

Abstract

Abstract The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generates the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the scanning ARM cloud radars (SACRs) is presented. These scan strategies are designed to address the scientific objectives of ARM; however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACR scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud geometrical properties, which are vastly different from the rain and snow shafts that are the primary targets of precipitation radars; the need to cover the cone of silence; and the scanning limitations of the SACRs. A “cloud surveillance” scan strategy is introduced that is based on a sequence of horizon-to-horizon range–height indicator (RHI) scans that sample the hemispherical sky (HS) every 30° azimuth (HSRHI). The HSRHI scan strategy is complimented with a low-elevation plan position indicator (PPI) scan. The HSRHI and PPI are repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between the HSRHI and PPI scan strategies, other scan strategies are introduced depending on the cloud conditions. In the future, information about the atmospheric cloud state will be used in a closed-loop process to optimize the selection of the SACR scan strategy.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3