Application of Spectral Polarimetry to a Hailstorm at Low Elevation Angle

Author:

Wang Yadong1,Yu Tian-You2,Ryzhkov Alexander V.3,Kumjian Matthew R.4

Affiliation:

1. Department of Electrical and Computer Engineering, Southern Illinois University at Edwardsville, Edwardsville, Illinois

2. School of Electrical and Computer Engineering, and Advanced Radar Research Center, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. Advanced Radar Research Center, and School of Meteorology, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

4. Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Abstract

AbstractSpectral polarimetry has the potential to be used to study microphysical properties in relation to the dynamics within a radar resolution volume by combining Doppler and polarimetric measurements. The past studies of spectral polarimetry have focused on using radar measurements from higher elevation angles, where both the size sorting from the hydrometeors’ terminal velocities and polarimetric characteristics are maintained. In this work, spectral polarimetry is applied to data from the 0° elevation angle, where polarimetric properties are maximized. Radar data collected by the C-band University of Oklahoma Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) during a hailstorm event on 24 April 2011 are used in the analysis. The slope of the spectral differential reflectivity exhibits interesting variations across the hail core, which suggests the presence of size sorting of hydrometeors caused by vertical shear in a turbulent environment. A nearby S-band polarimetric Weather Surveillance Radar-1988 Doppler (KOUN) is also used to provide insights into this hailstorm. Moreover, a flexible numerical simulation is developed for this study, in which different types of hydrometeors such as rain and melting hail can be considered individually or as a combination under different sheared and turbulent conditions. The impacts of particle size distribution, shear, turbulence, attenuation, and mixture of rain and melting hail on polarimetric spectral signatures are investigated with the simulated Doppler spectra and spectral differential reflectivity.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3