Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

Author:

Molod A.1,Salmun H.2,Dempsey M.3

Affiliation:

1. NASA Goddard Space Flight Center, Greenbelt, Maryland

2. Hunter College of the City University of New York, New York, New York

3. Earth and Environmental Sciences, Graduate Center, City University of New York, New York, New York

Abstract

AbstractAn algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear-sky conditions, summertime averaged hourly time series of PBL heights compare well with Richardson number–based estimates at the few NPN stations with hourly temperature measurements. Comparisons with estimates based on clear-sky reanalysis show that the wind profiler (WP) PBL heights are lower by approximately 250–500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy-sky conditions, and are generally comparable to the Richardson number–based PBL heights and higher than the reanalysis PBL heights. WP PBL heights have a smaller clear–cloudy condition difference than either of the other two. The algorithm presented here is shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3