Development and Testing of Instrumentation for UAV-Based Flux Measurements within Terrestrial and Marine Atmospheric Boundary Layers

Author:

Reineman Benjamin D.1,Lenain Luc2,Statom Nicholas M.2,Melville W. Kendall2

Affiliation:

1. Scripps Institution of Oceanography, and Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

2. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract Instrumentation packages have been developed for small (18–28 kg) unmanned aerial vehicles (UAVs) to measure momentum fluxes as well as latent, sensible, and radiative heat fluxes in the atmospheric boundary layer (ABL) and the topography below. Fast-response turbulence, hygrometer, and temperature probes permit turbulent momentum and heat flux measurements, and shortwave and longwave radiometers allow the determination of net radiation, surface temperature, and albedo. UAVs flying in vertical formation allow the direct measurement of fluxes within the ABL and, with onboard high-resolution visible and infrared video and laser altimetry, simultaneous observation of surface topography or ocean surface waves. The low altitude required for accurate flux measurements (typically assumed to be 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Flight tests of instrumented BAE Systems Manta C1 UAVs over land were conducted in January 2011 at McMillan Airfield (Camp Roberts, California). Flight tests of similarly instrumented Boeing Insitu ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center, Dahlgren Division (Dahlgren, Virginia), where the first known measurements of water vapor, heat, and momentum fluxes were made from low-altitude (down to 30 m) UAV flights over water (Potomac River). This study presents a description of the instrumentation, summarizes results from flight tests, and discusses potential applications of these UAVs for (marine) atmospheric boundary layer studies.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3