Quality evaluation for measurements of wind field and turbulent fluxes from a UAV-based eddy covariance system

Author:

Sun YiboORCID,Sude Bilige,Lin XingwenORCID,Geng Bing,Liu Bo,Ji Shengnan,Jing Junping,Zhu Zhiping,Xu Ziwei,Liu Shaomin,Quan Zhanjun

Abstract

Abstract. Instrumentation packages for eddy covariance (EC) measurements have been developed for unoccupied aerial vehicles (UAVs) to measure the turbulent fluxes of latent heat (LE), sensible heat (H), and CO2 (Fc) in the atmospheric boundary layer. This study aims to evaluate the performance of this UAV-based EC system. First, the measurement precision (1σ) of georeferenced wind was estimated to be 0.07 m s−1. Then, the effect of the calibration parameter and aerodynamic characteristics of the UAV on wind measurement was examined by conducting a set of calibration flights. The results showed that the calibration improved the quality of the measured wind field, and the influence of upwash and the leverage effect can be ignored in wind measurement by the UAV. Third, for the measurements of turbulent fluxes, the error caused by instrumental noise was estimated to be 0.03 µmolm-2s-1 for Fc, 0.02 W m−2 for H, and 0.08 W m−2 for LE. Fourth, data from the standard operational flights were used to assess the influence of resonance on the measurements and to test the sensitivity of the measurement under the variation (±30 %) in the calibration parameters around their optimum value. The results showed that the effect of resonance mainly affected the measurement of CO2 (∼5 %). The pitch offset angle (εθ) significantly affected the measurement of vertical wind (∼30 %) and turbulent fluxes (∼15 %). The heading offset angle (εψ) mainly affected the measurement of horizontal wind (∼15 %), and other calibration parameters had no significant effect on the measurements. The results lend confidence to the use of the UAV-based EC system and suggest future improvements for the optimization of the next-generation system.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3