A Lagrangian Trajectory View on Transport and Mixing Processes between the Eye, Eyewall, and Environment Using a High-Resolution Simulation of Hurricane Bonnie (1998)

Author:

Cram Thomas A.1,Persing John1,Montgomery Michael T.2,Braun Scott A.3

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. Department of Meteorology, Naval Postgraduate School, Monterey, California, and NOAA/Hurricane Research Division, Miami, Florida

3. Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

The transport and mixing characteristics of a large sample of air parcels within a mature and vertically sheared hurricane vortex are examined. Data from a high-resolution (2-km horizontal grid spacing) numerical simulation of real-case Hurricane Bonnie (1998) are used to calculate Lagrangian trajectories of air parcels in various subdomains of the hurricane (namely, the eye, eyewall, and near environment) to study the degree of interaction (transport and mixing) between these subdomains. It is found that 1) there is transport and mixing from the low-level eye to the eyewall that carries air possessing relatively high values of equivalent potential temperature (θe), which can enhance the efficiency of the hurricane heat engine; 2) a portion of the low-level inflow of the hurricane bypasses the eyewall to enter the eye, and this air both replaces the mass of the low-level eye and lingers for a sufficient time (order 1 h) to acquire enhanced entropy characteristics through interaction with the ocean beneath the eye; 3) air in the mid- to upper-level eye is exchanged with the eyewall such that more than half the air of the eye is exchanged in 5 h in this case of a sheared hurricane; and 4) that one-fifth of the mass in the eyewall at a height of 5 km has an origin in the mid- to upper-level environment where θe is much less than in the eyewall, which ventilates the ensemble average eyewall θe by about 1 K. Implications of these findings for the problem of hurricane intensity forecasting are briefly discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3