Evaluating the Impacts of COSMIC-2 GNSS RO Bending Angle Assimilation on Atlantic Hurricane Forecasts Using the HWRF Model

Author:

Miller William J.1,Chen Yong2,Ho Shu-Peng2,Shao Xi1

Affiliation:

1. a Cooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

2. b NOAA/National Environmental Satellite, Data, and Information Service, Center for Satellite Applications and Research, College Park, Maryland

Abstract

Abstract This study evaluates the impact of assimilating Global Navigation Satellite System (GNSS) radio occultation (RO) bending angles from Formosa Satellite Mission-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) receiver satellites on Hurricane Weather Research and Forecasting (HWRF) Model tropical cyclone (TC) forecasts. Launched in June 2019, the COSMIC-2 mission provides significantly higher tropics data coverage compared to its predecessor COSMIC constellation. GNSS RO measurements yield information about atmospheric pressure, temperature, and water vapor profiles. HWRF is cycled with and without COSMIC-2 bending angle data assimilation for six 2020 Atlantic hurricane cases. COSMIC-2 assimilation has little impact on HWRF track forecasts, consistent with HWRF’s design limiting cycled data assimilation impacts on surrounding large-scale flows; however, COSMIC-2 assimilation results in a statistically significant ∼8%–12% mean absolute forecast error reduction in minimum central sea level pressure for t = 36-, 54-, 60-, and 108–120-h lead times. Forecasts initialized from analyses assimilating COSMIC-2 observations also have a 1%–4% smaller 600–700-hPa specific humidity (SPFH) root-mean-squared deviation compared to radiosondes and dropwindsondes for most lead times. While not all HWRF intensity forecasts benefit from COSMIC-2 assimilation, a few show notable improvement. For example, assimilating two COSMIC-2 profiles within the inner core of developing Hurricane Hanna (2020) increases 800-hPa SPFH by up to 1 g kg−1 locally, helping to correct a dry bias. The forecast initialized from this analysis better captures Hanna’s observed intensification rate, likely because its moister inner core facilitates development of persistent deep convection near the TC center, where diabatic heating is more efficiently converted to cyclonic wind kinetic energy. Significance Statement Tropical cyclone (TC) intensification can be strongly sensitive to the lower-to-midtropospheric water vapor distribution near the storm. The COSMIC-2 GNSS radio occultation (RO) receiver satellite mission provides denser spatial coverage of atmospheric water vapor and temperature profiles over the tropics compared to other GNSS RO observation platforms. Herein, using six 2020 Atlantic TC cases, we evaluate the impacts of assimilating COSMIC-2 RO bending angles into a regional forecast model that already assimilates clear-sky satellite radiances. It is shown that COSMIC-2 assimilation yields a modest ∼10% intensity forecast skill improvement for several lead times, although more substantial intensity forecast improvement is found for a few forecasts where the COSMIC-2 observation assimilation helps correct a lower-to-midtropospheric water vapor bias.

Funder

NOAA Center for Earth System Sciences and Remote Sensing Technologies

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference76 articles.

1. Berg, R., and B. J. Reinhart, 2021: Tropical cyclone report: Hurricane Sally (11–17 September 2020). NHC Tech. Rep. AL192020, 69 pp., https://www.nhc.noaa.gov/data/tcr/AL192020_Sally.pdf.

2. Biswas, M. K., L. Carson, K. Newman, D. Stark, E. Kalina, E. Grell, and J. Frimel, 2018a: Community HWRF users’ guide V4.0a. Developmental Testbed Center, 163 pp., https://dtcenter.org/sites/default/files/community-code/hwrf/docs/users_guide/HWRF-UG-2018.pdf.

3. Biswas, M. K., and Coauthors, 2018b: Hurricane Weather Research and Forecasting (HWRF) model: 2018 Scientific Documentation. Developmental Testbed Center, 112 pp., https://dtcenter.org/sites/default/files/community-code/hwrf/docs/scientific_documents/HWRFv4.0a_ScientificDoc.pdf.

4. Blake, E., R. Berg, and A. Hagen, 2021: Tropical cyclone report: Hurricane Zeta (24–29 October 2020). NHC Tech. Rep. AL282020, 56 pp., https://www.nhc.noaa.gov/data/tcr/AL282020_Zeta.pdf.

5. Revised GNSS-RO observation uncertainties in the Met Office NWP system;Bowler, N. E.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3