Cloud, Aerosol, and Boundary Layer Structure across the Northeast Pacific Stratocumulus–Cumulus Transition as Observed during CSET

Author:

Bretherton Christopher S.1,McCoy Isabel L.1,Mohrmann Johannes1,Wood Robert1,Ghate Virendra2,Gettelman Andrew3,Bardeen Charles G.3,Albrecht Bruce A.4,Zuidema Paquita4

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Argonne National Laboratory, Argonne, Illinois

3. National Center for Atmospheric Research, Boulder, Colorado

4. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

AbstractDuring the Cloud System Evolution in the Trades (CSET) field study, 14 research flights of the National Science Foundation G-V sampled the stratocumulus–cumulus transition between Northern California and Hawaii and its synoptic variability. The G-V made vertically resolved measurements of turbulence, cloud microphysics, aerosol characteristics, and trace gases. It also carried dropsondes and a vertically pointing W-band radar and lidar. This paper summarizes these observations with the goals of fostering novel comparisons with theory, models and reanalyses, and satellite-derived products. A longitude–height binning and compositing strategy mitigates limitations of sparse sampling and spatiotemporal variability. Typically, a 1-km-deep decoupled stratocumulus-capped boundary layer near California evolved into 2-km-deep precipitating cumulus clusters surrounded by patches of thin stratus that dissipated toward Hawaii. Low cloud cover was correlated with estimated inversion strength more than with cloud droplet number, even though the thickest clouds were generally precipitating and ultraclean layers indicative of aerosol–cloud–precipitation interaction were common west of 140°W. Accumulation-mode aerosol concentration correlated well with collocated cloud droplet number concentration and was typically largest near the surface. Aitken mode aerosol concentration was typically larger in the free troposphere. Wildfire smoke produced spikes of aerosol and trace gases on some flights. CSET data are compared with space–time collocated output from MERRA-2 reanalysis and from the CAM6 climate model run with winds and temperature nudged toward this reanalysis. The reanalysis compares better with the observed relative humidity than does nudged CAM6. Both vertically diffuse the stratocumulus cloud layer versus observations. MERRA-2 slightly underestimates in situ carbon monoxide measurements and underestimates ozone depletion within the boundary layer.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3