Analysis of Ensemble Mean Forecasts: The Blessings of High Dimensionality

Author:

Christiansen Bo1ORCID

Affiliation:

1. Danish Meteorological Institute, Copenhagen, Denmark

Abstract

Abstract In weather and climate sciences ensemble forecasts have become an acknowledged community standard. It is often found that the ensemble mean not only has a low error relative to the typical error of the ensemble members but also that it outperforms all the individual ensemble members. We analyze ensemble simulations based on a simple statistical model that allows for bias and that has different variances for observations and the model ensemble. Using generic simplifying geometric properties of high-dimensional spaces we obtain analytical results for the error of the ensemble mean. These results include a closed form for the rank of the ensemble mean among the ensemble members and depend on two quantities: the ensemble variance and the bias both normalized with the variance of observations. The analytical results are used to analyze the GEFS reforecast where the variances and bias depend on lead time. For intermediate lead times between 20 and 100 h the two terms are both around 0.5 and the ensemble mean is only slightly better than individual ensemble members. For lead times larger than 240 h the variance term is close to 1 and the bias term is near 0.5. For these lead times the ensemble mean outperforms almost all individual ensemble members and its relative error comes close to −30%. These results are in excellent agreement with the theory. The simplifying properties of high-dimensional spaces can be applied not only to the ensemble mean but also to, for example, the ensemble spread.

Funder

Horizon 2020

Nordisk Ministerråd

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference49 articles.

1. Understanding the CMIP3 multimodel ensemble;Annan;J. Climate,2011

2. Blum, A., J.Hopcroft, and R.Kannan, 2018: Foundations of Data Science. Cornell University, 479 pp., https://www.cs.cornell.edu/jeh/book.pdf.

3. Verification against perturbed analyses and observations;Bowler;Nonlinear Processes Geophys.,2015

4. The effective number of spatial degrees of freedom of a time-varying field;Bretherton;J. Climate,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3