Estimating the gain of increasing the ensemble size from analytical considerations

Author:

Christiansen Bo1ORCID

Affiliation:

1. Danish Meteorological Institute Copenhagen Denmark

Abstract

AbstractModel ensembles may provide estimates of uncertainties arising from unknown initial conditions and model deficiencies. Often, the ensemble mean is taken as the best estimate, and quantities such as the mean‐squared error between model mean and observations decrease with the number of ensemble members. But the ensemble size is often limited by available resources, and so some idea of how many ensemble members that are needed before the error has saturated would be advantageous. The behaviour with ensemble size is often estimated by producing subsamples from a large ensemble. But this strategy requires that this large ensemble is already available. Fortunately, in many situations, the dependence on ensemble size follows simple analytical relations when the quantity under interest (such as the mean‐squared error between ensemble mean and observations) is calculated over many grid points or time points. This holds both for ensemble means and the related sampling variance. Here, we present such relations and demonstrate how they can be used to estimate the gain of increasing the ensemble. Whereas previous work has mainly focused on the size of the model ensemble, we recognize that uncertainties in observations play a role. We therefore also study the effect of using the mean of an ensemble of reanalyses. We show how the analytical relations can be used to estimate the point where the gain of increasing the size of the model ensemble is dwarfed by the gain of increasing the number of reanalyses. We demonstrate these points using two climate model ensembles: a large multimodel ensemble and a large single‐model initial‐condition ensemble.

Funder

HORIZON EUROPE Global Challenges and European Industrial Competitiveness

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3