The Nyquist Issue in Linear Inverse Modeling

Author:

Penland Cécile1

Affiliation:

1. NOAA/ESRL/Physical Sciences Division, Boulder, Colorado

Abstract

Abstract Linear inverse modeling (LIM) is a statistical technique based on covariance statistics that estimates the best-fit linear Markov process to a multivariate time series. An integral, often-ignored part of the technique is a test of whether or not the linear assumptions are valid. One test for linearity is the so-called tau test. While this test can be trusted when it passes, it sometimes fails when it ought to pass. In this article, we discuss one of the reasons for spurious failure, the “Nyquist issue,” which occurs when the lagged covariance matrix used in the analysis is numerically performed at a lag greater than or nearly equal to half the period of a natural mode of variability represented in the time series. As an illustration relevant to a system with many degrees of freedom, but simple enough to solve analytically, we consider a four-dimensional system consisting of two modal pairs. Within this framework, we suggest one solution that can be applied if the time series are long enough. It is hoped that awareness of this issue can prevent misinterpretation of LIM results.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3