The High-Rank Ensemble Transform Kalman Filter

Author:

Huang Bo1,Wang Xuguang1,Bishop Craig H.2

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. School of Earth Sciences, University of Melbourne, Melbourne, Australia

Abstract

Abstract The ensemble Kalman filter is typically implemented either by applying the localization on the background error covariance matrix (B-localization) or by inflating the observation error variances (R-localization). A mathematical demonstration suggests that for the same effective localization function, the background error covariance matrix from the B-localization method shows a higher rank than the R-localization method. The B-localization method is realized in the ensemble transform Kalman filter (ETKF) by extending the background ensemble perturbations through modulation (MP-localization). Specifically, the modulation functions are constructed from the leading eigenvalues and eigenvectors of the original B-localization matrix. Because of its higher rank than the classic R-localized ETKF, the B-/MP-localized ETKF is termed as the high-rank ETKF (HETKF). The performances of the HETKF and R-localized ETKF were compared through cycled data assimilation experiments using the Lorenz model II. The results show that the HETKF outperforms the R-localized ETKF especially for a small ensemble. The improved analysis in the HETKF is likely associated with the higher rank from the B-/MP-localization method, since its higher rank is expected to contribute more positively to alleviating the rank deficiency issue and thus improve the analysis for a small ensemble. The HETKF is less sensitive to the localization length scales and inflation factors. Furthermore, the experiments suggest that the above conclusion comparing the HETKF and R-localized ETKF does not depend on how the analyzed ensemble perturbations are subselected in the HETKF.

Funder

National Oceanic and Atmospheric Administration

U.S. Naval Research Laboratory

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3