Troposphere–Stratosphere Coupling Following Tropospheric Blocking and Extratropical Cyclones

Author:

Attard Hannah E.1,Lang Andrea L.1

Affiliation:

1. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract A climatology of the 100- and 250-hPa 45°–75°N zonal-mean meridional eddy heat flux anomaly, hereafter heat flux anomaly, was created to examine its variability following cool-season (i.e., October–April) blocks and extratropical cyclones. The goal is to elucidate the dynamical and environmental differences between synoptic events followed by the most extreme heat flux anomalies. The analysis was conducted with the National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications, version 2 reanalysis. The results show that, on average, European blocks and west Pacific cyclones are followed by positive heat flux anomalies while west Pacific blocks and Atlantic extratropical cyclones are followed by negative heat flux anomalies. However, there was a large range of the 11-day-average heat flux anomaly following the events. Events in each region were further partitioned by their 100-hPa heat flux anomaly for a temporal and spatial analysis of the top and bottom quartile of events. Top-quartile events exhibited a baroclinic wave structure with height from the troposphere through the stratosphere, whereas bottom-quartile events were associated with a barotropic wave structure with height; these structures are significant at the 5% level. The results suggest that the sign of the heat flux anomaly is not dependent on the location of the synoptic event alone, but that there are common climatological and anomalous wave patterns surrounding the synoptic events that result in positive or negative heat flux anomaly. Regardless of event region, the precursor stratospheric structure is a key indicator in whether an event is followed by positive or negative 100-hPa heat flux anomalies.

Funder

National Aeronautics and Space Administration

Directorate for Geosciences

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3