The Impact of Tropospheric and Stratospheric Tropical Variability on the Location, Frequency, and Duration of Cool-Season Extratropical Synoptic Events

Author:

Attard Hannah E.1,Lang Andrea L.1

Affiliation:

1. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract Cool-season occurrences of blocks, extratropical cyclones that undergo explosive cyclogenesis, and tropical cyclones (TCs) that undergo extratropical transition (ET) from 1980 to 2015 are analyzed using the National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications, version 2, dataset. These synoptic events are first examined in a climatological analysis that includes identifying consecutive synoptic events, namely, blocks that follow bombs or ET events as well as extratropical cyclones that follow ET events. These synoptic events are then analyzed with respect to three tropical modes of variability: the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation, and the stratospheric quasi-biennial oscillation (QBO). The QBO was considered from both a momentum and thermal point of view, using the equatorial 30-hPa zonal-mean wind and the equatorial zonal wind shear between 30 and 50 hPa, respectively. The results show that in the seven days prior to cool-season blocks and ET events, there is a statistically significant frequency minimum in MJO phases 7 and 3, respectively. With respect to the QBO, there is a statistically significant frequency maximum in neutral QBO conditions during bomb onset and a frequency minimum during ET onset. When stratifying bombs by latitude, there is a significant reduction in Arctic (i.e., poleward of 55°N) bomb onset during easterly QBO conditions. The results show that both tropospheric and stratospheric tropical modes of variability can modulate the frequency of extratropical synoptic events to a similar degree.

Funder

Division of Atmospheric and Geospace Sciences

National Aeronautics and Space Administration

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3