The Multiple-Vortex Structure of the El Reno, Oklahoma, Tornado on 31 May 2013

Author:

Bluestein Howard B.1,Thiem Kyle J.2,Snyder Jeffrey C.3,Houser Jana B.4

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. National Weather Service, Peachtree City, Georgia

3. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

4. Department of Geography, Ohio University, Athens, Ohio

Abstract

Abstract This study documents the formation and evolution of secondary vortices associated within a large, violent tornado in Oklahoma based on data from a close-range, mobile, polarimetric, rapid-scan, X-band Doppler radar. Secondary vortices were tracked relative to the parent circulation using data collected every 2 s. It was found that most long-lived vortices (those that could be tracked for ≥15 s) formed within the radius of maximum wind (RMW), mainly in the left-rear quadrant (with respect to parent tornado motion), passing around the center of the parent tornado and dissipating closer to the center in the right-forward and left-forward quadrants. Some secondary vortices persisted for at least 1 min. When a Burgers–Rott vortex is fit to the Doppler radar data, and the vortex is assumed to be axisymmetric, the secondary vortices propagated slowly against the mean azimuthal flow; if the vortex is not assumed to be axisymmetric as a result of a strong rear-flank gust front on one side of it, then the secondary vortices moved along approximately with the wind.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference83 articles.

1. Alexander, C. R. , 2010: A mobile radar based climatology of supercell tornado structures and dynamics. Ph. D. thesis, School of Meteorology, University of Oklahoma, 229 pp.

2. The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes;Alexander;Mon. Wea. Rev.,2005

3. An assessment of low-level baroclinity and vorticity within a simulated supercell;Beck;Mon. Wea. Rev.,2013

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3