Climate Model State Estimation Using Variants of EnKF Coupled Data Assimilation

Author:

Sandery Paul A.1,O’Kane Terence J.1,Kitsios Vassili1,Sakov Pavel2

Affiliation:

1. CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

2. Bureau of Meteorology, Melbourne, Victoria, Australia

Abstract

Abstract Data assimilation (DA) experiments are performed to assess impacts of observations in climate model state estimation through the cross-domain ocean–atmosphere forecast error covariances (cross covariances). Specifically, we explore strongly and weakly coupled DA variants using the Climate Analysis Forecast Ensemble (CAFE) system. This comprises 96 ensemble members of the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 climate model assimilating observational data from the ocean, atmosphere, and sea ice realms with the ensemble Kalman filter (EnKF). Sequences of atmospheric synoptic time-scale coupled forecasts (7 days) are carried out with model consistent initialization. Unassimilated forward-independent observations are used to quantify forecast innovation error-growth rates. The results show benefit for the slow components of the atmosphere and ocean subsurface when strongly coupling ocean observations to the atmosphere. In the present system, projecting fast atmospheric observations onto the ocean subsurface through the cross covariances benefits the oceanic and atmospheric near-surface layers; however, this leads to deterioration in the ocean subsurface. Particular variants of coupled DA are able to constrain the ocean and atmosphere. The forecasts initialized with these variants have predictability at intraseasonal time scales. Errors associated with the dominant intraseasonal mode of variability, the Madden–Julian oscillation (MJO), are decomposed into normal mode functions. Consistent with recent studies showing large MJO events are concurrent with rapid error growth associated with nonlinear interactions, we find a clear relationship between the strength of a given MJO event and the related forecast innovations. Our results demonstrate consistent system behavior in relation to capturing real-world disturbances that affect climate predictability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3