Impact of Instantaneous Parameter Sensitivity on Ensemble‐Based Parameter Estimation: Simulation With an Intermediate Coupled Model

Author:

Cao Lige12ORCID,Han Guijun12ORCID,Li Wei12ORCID,Wu Haowen12ORCID,Wu Xiaobo12ORCID,Zhou Gongfu12,Zheng Qingyu12ORCID

Affiliation:

1. School of Marine Science and Technology Tianjin University Tianjin China

2. Tianjin Key Laboratory for Marine Environmental Research and Service Tianjin China

Abstract

AbstractOn ensemble‐based coupled data assimilation, cross‐component parameter estimation (CPE), has not been as extensively developed and applied as weakly coupled state and parameter estimation along with cross‐component state estimation. This discrepancy is partially attributed to the lack of emphasis on the instantaneous response of coupled model states with respect to parameters across different components. We define so‐called response as the instantaneous parameter sensitivity (IPS). Under the framework of sequential assimilation, the prior information heavily relies on the IPS of coupled states with different time scales. Based on the IPS analysis for an intermediate coupled model, a series of twin experiments of state and parameter estimation are conducted, in which an IPS‐inspired adaptive inflation scheme for parameter ensemble is introduced. Results show that the success of a parameter estimation strategy is closely tied to the significant IPS of the observed state to the parameter targeted for optimization, as it maintains a high signal‐to‐noise ratio in the error covariance between parameter and prior state, thereby enhancing parameter estimation. An interesting finding in the context of IPS‐based CPE is: an atmospheric parameter can be successfully estimated by assimilating observations from slow‐varying oceanic component, but not vice versa. In comparison with cross‐component state estimation, successful CPE significantly enhances the estimation accuracy of coupled states by mitigating model bias.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3