Atmospheric Processes and Climatological Characteristics of the 79N Glacier (Northeast Greenland)

Author:

Turton Jenny V.1,Mölg Thomas1,Van As Dirk2

Affiliation:

1. Climate System Research Group, Institute of Geography, Friedrich-Alexander University, Erlangen-Nürnberg, Erlangen, Germany

2. Geological Survey of Denmark and Greenland, Copenhagen, Denmark

Abstract

Abstract The Nioghalvfjerdsfjorden glacier (the 79 fjord, henceforth referred to as 79N) has been thinning and accelerating since the early 2000s, as a result of calving episodes at the front of the glacier. As 8% of the Greenland Ice Sheet area drains into 79N, changes in the stability of 79N could propagate into the interior of Greenland. Despite this concern, relatively little is known about the atmospheric conditions over 79N. We present the surface atmospheric processes and climatology of the 79N region from analyses of data from four automatic weather stations (AWS) and reanalysis data from ERA-Interim. Over the floating section of the glacier, the annual average air temperature is −16.7°C, decreasing to −28.5°C during winter. Winds over the glacier are predominantly westerly and are of katabatic origin. Over the last 39 years the near-surface air temperature has increased at a rate of +0.08°C yr−1. In addition, we find that large, rapid (48 h) temperature increases (>10°C) occur during the five-month dark period (November–March). Eight (±4) warm-air events occur annually from 1979 to 2017. We use the Weather Research and Forecasting (WRF) Model to simulate a particular warm-air event with above-freezing air temperatures between 30 November and 2 December 2014. The warm event was caused by warm-air advection from the southeast and a subsequent increase in the longwave radiation toward the surface due to low-level cloud formation. The frequent nature of the temperature jumps and the magnitude of the temperature increases are likely to have an impact on the surface mass balance of the glacier by bringing the skin temperatures to the melting point.

Funder

Bundesministerium für Bildung und Forschung

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3