An Analytical Spectral Model for Infragravity Waves over Topography in Intermediate and Shallow Water under Nonbreaking Conditions

Author:

Liao Zhiling1,Li Shaowu1,Liu Ye1,Zou Qingping2

Affiliation:

1. a State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China

2. b The Lyell Centre, Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh, United Kingdom

Abstract

AbstractThe theoretical model for group-forced infragravity (IG) waves in shallow water is not well established for nonbreaking conditions. In the present study, analytical solutions of the group-forced IG waves at O(β1) (β1 = hx/(Δkh), hx = bottom slope, Δk = group wavenumber, h = depth) in intermediate water and at in shallow water are derived separately. In case of off-resonance [β1μ−1 = O(β1), where is the resonant departure parameter, cg = group speed] in intermediate water, additional IG waves in quadrature with the wave group forcing (hereinafter, the nonequilibrium response or component) are induced at O(β1) relative to the equilibrium bound IG wave solution of Longuet–Higgins and Stewart (1962) in phase with the wave group. The present theory indicates that the nonequilibrium response is mainly attributed to the spatial variation of the equilibrium bound IG wave amplitude instead of group-forcing. In case of near-resonance [β1μ−1 = O(1)] in shallow water; however, both the equilibrium and nonequilibrium components are at the leading order. Based on the nearly-resonant solution, the shallow water limit of the local shoaling rate of bound IG waves over a plane sloping beach is derived to be ~h−1 for the first time. The theoretical predictions compare favorably with the laboratory experiment by Van Noorloos (2003) and the present numerical model results generated using SWASH. Based on the proposed solution, the group-forced IG waves over a symmetric shoal are investigated. In case of off-resonance, the solution predicts a roughly symmetric reversible spatial evolution of the IG wave amplitude, while in cases of near to full resonance the IG wave is significantly amplified over the shoal with asymmetric irreversible spatial evolution.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3