Abstract
Short-wave group forcing is a major driving mechanism of infragravity waves. The subharmonic response to wave group forcing approaches resonance in shallow water where the group velocity is equal to the shallow-water wave-propagating speed. Currently, there is a lack of understanding of the connection between the free and bound components of group-induced infragravity waves and the consistency among existing solutions for off- and near-resonance conditions in intermediate and shallow water. Here, a unified solution of group-induced subharmonics is derived based on Green's function for the first time. The new solution is valid for any resonance intensity and is able to describe group-induced subharmonic behaviour at all water depths consistently from a new angle. The proposed solution reduces to existing solutions for intermediate depth (Longuet-Higgins & Stewart,J. Fluid Mech., vol. 13, 1962, pp. 481–504; Zou,Phys. Oceanogr., vol. 41, 2011, pp. 1842–1859), shallow water and/or over a plane sloping beach (Van Leeuwen, PhD thesis, TU Delft, 1992; Schäffer,J. Fluid Mech., vol. 247, 1993, pp. 551–588; Janssenet al.,J. Geophys. Res., vol. 108, 2003, p. 3252; Contardoet al.,J. Phys. Oceanogr., vol. 51, 2021, pp. 1465–1487; Liaoet al.,J. Phys. Oceanogr., vol. 51, 2021, pp. 2749–2765). Unlike previous solutions, the Green's function-based solution describes all subharmonics as free subharmonics continuously radiated away from each point source in the group-induced forcing field determined by wave radiation stress gradients. The superposition of all these free subharmonics yields so-called bound subharmonics by previous studies due to group-modulated emission of each free subharmonic through the source field bound to the wave group. Therefore, this solution provides theoretical evidence that the group-induced subharmonic at any observation point is dependent on the surrounding radiation stress field and topography. Under full-resonance conditions in shallow water, downwave-propagating subharmonics excited at all source locations interfere with each other constructively; therefore, their superposed amplitude is proportional to the travel distance of wave groups. Combined with the conventional moving-breakpoint forcing model, the predicted amplitude of the subharmonic in the surf zone by the present solution is in good agreement with laboratory observations.
Funder
National Natural Science Foundation of China
Natural Environment Research Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献