A Remotely Sensed Global Terrestrial Drought Severity Index

Author:

Mu Qiaozhen1,Zhao Maosheng1,Kimball John S.2,McDowell Nathan G.3,Running Steven W.1

Affiliation:

1. Numerical Terradynamic Simulation Group, College of Forestry and Conservation, University of Montana, Missoula, Montana

2. Flathead Lake Biological Station, University of Montana, Polson, Montana

3. Earth and Environmental Sciences, Atmospheric and Environmental Dynamics Group, Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract

Regional drought and flooding from extreme climatic events are increasing in frequency and severity, with significant adverse ecosocial impacts. Detecting and monitoring drought at regional to global scales remains challenging, despite the availability of various drought indices and widespread availability of potentially synergistic global satellite observational records. The authors have developed a method to generate a near-real-time remotely sensed drought severity index (DSI) to monitor and detect drought globally at 1-km spatial resolution and regular 8-day, monthly, and annual frequencies. The new DSI integrates and exploits information from current operational satellite-based terrestrial evapo-transpiration (ET) and vegetation greenness index [normalized difference vegetation index (NDVI)] products, which are sensitive to vegetation water stress. Specifically, this approach determines the annual DSI departure from its normal (2000–11) using the remotely sensed ratio of ET to potential ET (PET) and NDVI. The DSI results were derived globally and captured documented major regional droughts over the last decade, including severe events in Europe (2003), the Amazon (2005 and 2010), and Russia (2010). The DSI corresponded favorably (correlation coefficient r = 0.43) with the precipitation-based Palmer drought severity index (PDSI), while both indices captured similar wetting and drying patterns. The DSI was also correlated with satellite-based vegetation net primary production (NPP) records, indicating that the combined use of these products may be useful for assessing water supply and ecosystem interactions, including drought impacts on crop yields and forest productivity. The remotely sensed global terrestrial DSI enhances capabilities for nearreal-time drought monitoring to assist decision makers in regional drought assessment and mitigation efforts, and without many of the constraints of more traditional drought monitoring methods.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3