Improvements in Nonconvective Aviation Turbulence Prediction for the World Area Forecast System

Author:

Kim Jung-Hoon1,Sharman Robert2,Strahan Matt3,Scheck Joshua W.3,Bartholomew Claire4,Cheung Jacob C. H.4,Buchanan Piers4,Gait Nigel4

Affiliation:

1. School of Earth and Environmental Sciences (SEES), Seoul National University (SNU), Seoul, South Korea

2. National Center for Atmospheric Research, Boulder, Colorado

3. NOAA/Aviation Weather Center, Kansas City, Missouri

4. Met Office, Exeter, United Kingdom

Abstract

AbstractFor the next generation of the World Area Forecast System (WAFS), the global Graphical Turbulence Guidance (G-GTG) has been developed using global numerical weather prediction (NWP) model outputs as an input to compute a set of turbulence diagnostics, identifying strong spatial gradients of meteorological variables associated with clear-air turbulence (CAT) and mountain-wave turbulence (MWT). The G-GTG provides an atmospheric turbulence intensity metric of energy dissipation rate (EDR) to the 1/3 power (m2/3 s–1), which is the International Civil Aviation Organization (ICAO) standard for aircraft reporting. Deterministic CAT and MWT EDR forecasts are derived from ensembles of calibrated multiple CAT and MWT diagnostics, respectively, with the final forecast provided by the gridpoint-by-gridpoint maximum of the CAT and MWT ensemble means. In addition, a probabilistic EDR forecast is produced by the percentage agreement of the individual CAT and MWT diagnostics that exceed a certain EDR threshold for turbulence (i.e., multidiagnostic ensemble). Objective evaluations of the G-GTG against global in situ EDR measurement data show that both deterministic and probabilistic G-GTG significantly improve the current WAFS CAT product, mainly because the G-GTG takes into account turbulence from various sources related to CAT and MWT. The probabilistic G-GTG forecast is more reliable at predicting light-or-greater (EDR > 0.15)- than moderate-or-greater (EDR > 0.22)-level turbulence, although it suffers from overforecasting. This will be improved in the future when we use this methodology with NWP ensembles and more observation data will be available for calibration. We expect that the new G-GTG forecasts will be beneficial to aviation users globally.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3