Decadal Fluctuations in Planetary Wave Forcing Modulate Global Warming in Late Boreal Winter

Author:

Cohen Judah1,Barlow Mathew2,Saito Kazuyuki3

Affiliation:

1. Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

2. University of Massachusetts—Lowell, Lowell, Massachusetts

3. Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan, and International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Abstract

Abstract The warming trend in global surface temperatures over the last 40 yr is clear and consistent with anthropogenic increases in greenhouse gases. Over the last 2 decades, this trend appears to have accelerated. In contrast to this general behavior, however, here it is shown that trends during the boreal cold months in the recent period have developed a marked asymmetry between early winter and late winter for the Northern Hemisphere, with vigorous warming in October–December followed by a reversal to a neutral/cold trend in January–March. This observed asymmetry in the cold half of the boreal year is linked to a two-way stratosphere–troposphere interaction, which is strongest in the Northern Hemisphere during late winter and is related to variability in Eurasian land surface conditions during autumn. This link has been demonstrated for year-to-year variability and used to improve seasonal time-scale winter forecasts; here, this coupling is shown to strongly modulate the warming trend, with implications for decadal-scale temperature projections.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3