Changes in the Timing of Snowmelt and Streamflow in Colorado: A Response to Recent Warming

Author:

Clow David W.1

Affiliation:

1. U.S. Geological Survey, Lakewood, Colorado

Abstract

Abstract Trends in the timing of snowmelt and associated runoff in Colorado were evaluated for the 1978–2007 water years using the regional Kendall test (RKT) on daily snow-water equivalent (SWE) data from snowpack telemetry (SNOTEL) sites and daily streamflow data from headwater streams. The RKT is a robust, nonparametric test that provides an increased power of trend detection by grouping data from multiple sites within a given geographic region. The RKT analyses indicated strong, pervasive trends in snowmelt and streamflow timing, which have shifted toward earlier in the year by a median of 2–3 weeks over the 29-yr study period. In contrast, relatively few statistically significant trends were detected using simple linear regression. RKT analyses also indicated that November–May air temperatures increased by a median of 0.9°C decade−1, while 1 April SWE and maximum SWE declined by a median of 4.1 and 3.6 cm decade−1, respectively. Multiple linear regression models were created, using monthly air temperatures, snowfall, latitude, and elevation as explanatory variables to identify major controlling factors on snowmelt timing. The models accounted for 45% of the variance in snowmelt onset, and 78% of the variance in the snowmelt center of mass (when half the snowpack had melted). Variations in springtime air temperature and SWE explained most of the interannual variability in snowmelt timing. Regression coefficients for air temperature were negative, indicating that warm temperatures promote early melt. Regression coefficients for SWE, latitude, and elevation were positive, indicating that abundant snowfall tends to delay snowmelt, and snowmelt tends to occur later at northern latitudes and high elevations. Results from this study indicate that even the mountains of Colorado, with their high elevations and cold snowpacks, are experiencing substantial shifts in the timing of snowmelt and snowmelt runoff toward earlier in the year.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 376 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3