Mountainous Floodplain Connectivity in Response to Hydrological Transitions

Author:

Babey Tristan12ORCID,Perzan Zach1ORCID,Pierce Sam3ORCID,Rogers Brian1,Wang Lijing4,Carroll Rosemary W. H.5ORCID,Bargar John R.6ORCID,Boye Kristin3,Maher Kate1ORCID

Affiliation:

1. Department of Earth System Science Stanford University Stanford CA USA

2. Géosciences Rennes Université de Rennes Rennes France

3. Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA USA

4. Earth and Environmental Sciences Area Lawrence Berkeley National Laboratory Berkeley CA USA

5. Desert Research Institute Reno NV USA

6. Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractIn mountainous watersheds, floodplain sediments are typically characterized by gravel bed layers capped by an overlying soil unit that serves as a hotspot for biogeochemical reactivity. However, the influence of soil biogeochemistry on gravel bed underflow composition remains unclear, especially during hydrological transitions that alter the vertical connectivity between overlaying soils and the underlying gravel bed. This study investigates these dynamics by measuring hydraulic gradients and water compositions over three hydrological years in a typical mountainous, low‐order stream floodplain in the Upper Colorado River Basin. Results indicate that the timing of hydrological conditions strongly influences the vertical exchanges that control water quality. Specifically, during flooding events such as beaver ponding, that induce downward flushing of the soil, anoxic conditions prevalent in the biogeochemically active soil are transferred downstream via gravel bed underflow. Conversely, snowmelt and drought conditions increase oxic conditions in the gravel bed due to diminished hydrological connectivity with the overlying soil. To compare water quality response to hydrological transitions across similar floodplain environments, we propose a conceptual model that quantifies the inundation‐induced flushing of soil porewater to measure solute exchange efficiency with the gravel bed solute convergence efficiency (SCE). This model provides a framework for quantifying biogeochemical processes in hydrological underflow systems, which is critical for water and elemental budgets in these globally important mountainous ecosystems.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3