Determination of Precipitation Return Values in Complex Terrain and Their Evaluation

Author:

Früh Barbara1,Feldmann Hendrik1,Panitz Hans-Jürgen1,Schädler Gerd1,Jacob Daniela2,Lorenz Philip2,Keuler Klaus3

Affiliation:

1. Institute for Meteorology and Climate Research, KIT Karlsruhe, Karlsruhe, Germany

2. Max Planck Institute for Meteorology, Hamburg, Germany

3. Department of Environmental Meteorology, Brandenburg University of Technology, Cottbus, Brandenburg, Germany

Abstract

Abstract To determine return values at various return periods for extreme daily precipitation events over complex orography, an appropriate threshold value and distribution function are required. The return values are calculated using the peak-over-threshold approach in which only a reduced sample of precipitation events exceeding a predefined threshold is analyzed. To fit the distribution function to the sample, the L-moment method is used. It is found that the deviation between the fitted return values and the plotting positions of the ranked precipitation events is smaller for the kappa distribution than for the generalized Pareto distribution. As a second focus, the ability of regional climate models to realistically simulate extreme daily precipitation events is assessed. For this purpose the return values are derived using precipitation events exceeding the 90th percentile of the precipitation time series and a fit of a kappa distribution. The results of climate simulations with two different regional climate models are analyzed for the 30-yr period 1971–2000: the so-called consortium runs performed with the climate version of the Lokal Modell (referred to as the CLM-CR) at 18-km resolution and the Regional Model (REMO)–Umweltbundesamt (UBA) simulations at 10-km resolution. It was found that generally the return values are overestimated by both models. Averaged across the region the overestimation is higher for REMO–UBA compared to CLM-CR.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. Future extreme events in European climate: An exploration of regional climate model projections.;Beniston;Climatic Change,2007

2. CLM–The climate version of LM: Brief description and long-term applications.;Böhm,2006

3. Tests of the generalized Pareto distribution for predicting extreme wind speeds.;Brabson;J. Appl. Meteor.,2000

4. Bülow, K. , 2010: Zeitreihenanalyse von regionalen Temperatur- und Niederschlagssimulationen in Deutschland (Time series analysis of simulated temperature and precipitation in Germany). Ph.D. thesis, Universität Hamburg, Berichte zur Erdsystemforschung 75, 148 pp.

5. Analysis and objective mapping of extreme daily rainfall in Catalonia.;Casas;Int. J. Climatol.,2007

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3