Using Nonstationary Depth-Frequency Curves to Characterize Local Precipitation Trends

Author:

Marali Kalra,Cibin Raj

Abstract

Highlights Design storms should incorporate nonstationarity under changing climate scenarios. Three generalized extreme value distributions were fitted to represent nonstationarity for local precipitation analysis. The nonstationary models proposed in this study perform well at sites with strong precipitation trends. Abstract. As climate change advances, the stationarity assumption that governs traditional precipitation analysis is becoming untenable. Studies that incorporate nonstationarity typically use global circulation model (GCM) projections to determine the magnitude and direction of expected precipitation changes. However, the high computational costs and the coarse spatial resolution of GCMs make this method unsuitable for local precipitation analysis. In this study, nonstationarity is represented by a precipitation probability distribution with time-varying parameters. Three generalized extreme value (GEV) distributions are fitted: (1) the shift model, where the GEV location parameter varies linearly with time, (2) the stretch model, where the GEV location and scale parameters both vary linearly with time, and (3) the stationary model, a time-invariant distribution provided for the purpose of comparison. This procedure is applied to 24-h annual maximum precipitation records for ninety years (1900-1989) at five long-term measuring sites in Pennsylvania. Results varied among the five sites, suggesting that localized climate effects can cause precipitation differences at a small spatial scale. No significant nonstationarity was detected in two of the five locations. In three locations, however, increases in GEV location and scale combined to create a substantial, though not always significant, rise in the frequency of extreme precipitation. These trends were extrapolated forward over 30 years (1990-2019) and compared with an observed distribution for that year. The nonstationary models appeared to perform better at sites with stronger precipitation trends, which suggests a simple procedure for selecting sites where nonstationary analysis is most needed. Keywords: Climate change, Design storm, Generalized extreme value, Nonstationarity.

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3