Simulating the Delaware Bay Buoyant Outflow: Comparison with Observations

Author:

Whitney Michael M.1,Garvine Richard W.1

Affiliation:

1. College of Marine Studies, University of Delaware, Newark, Delaware

Abstract

AbstractCoastal buoyant outflows from rivers and estuaries previously have been studied with field research, laboratory experiments, and numerical models. There is a dire need to evaluate model performance in light of coastal current observations. This research simulates the Delaware Bay outflow and compares results with observations of estuarine and shelf conditions. Observations include an estuarine salinity climatology, a record of freshwater delivery to the shelf, coastal current salinity mappings, and surface drifter data. Simulation efforts focus on spring 1993 and spring 1994, the primary field study period. The simulation is forced with river discharge, winds, and tides; only tidal-averaged results are discussed. Estuarine salinity results are consistent with the observed lateral salinity pattern, vertical structure, and response to river discharge. Salinities within the lower bay agree with observations, but the simulation overestimates the along-estuary salinity gradient. Observed and simulated freshwater delivery exhibit the same amplitude of response to river discharge and winds. The simulation produces a buoyant outflow that is generally consistent with the observed buoyancy signature, width, length, and vertical structure over a variety of river discharge and wind conditions. The simulated coastal current, however, tends to be somewhat shorter and fresher than observed. Simulated surface drifter paths exhibit the observed onshore advection during downwelling winds as well as offshore transport and current reversals during upwelling winds. A statistical evaluation based on shelf salinity mappings indicates that the model reproduces the observed variance and has only a small bias (less than 10% of plume buoyancy signature). The rms error of 1.2 psu is linked to the shorter and fresher nature of the simulated coastal current. Observational comparisons discussed in this paper indicate that the model can simulate many coastal current features and its response to river discharge and wind forcing.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3