Surface Data Assimilation Using an Ensemble Kalman Filter Approach with Initial Condition and Model Physics Uncertainties

Author:

Fujita Tadashi1,Stensrud David J.2,Dowell David C.3

Affiliation:

1. NOAA/National Severe Storms Laboratory, and Sasaki Institute, University of Oklahoma, Norman, Oklahoma, and Numerical Prediction Division, Japan Meteorological Agency, Tokyo, Japan

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

3. Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma

Abstract

Abstract The assimilation of surface observations using an ensemble Kalman filter (EnKF) approach is evaluated for the potential to improve short-range forecasting. Two severe weather cases are examined, in which the assimilation is performed over a 6-h period using hourly surface observations followed by an 18-h simulation period. Ensembles are created in three different ways—by using different initial and boundary conditions, by using different model physical process schemes, and by using both different initial and boundary conditions and different model physical process schemes. The ensembles are compared in order to investigate the role of uncertainties in the initial and boundary conditions and physical process schemes in EnKF data assimilation. In the initial condition ensemble, spread is associated largely with the displacement of atmospheric baroclinic systems. In the physics ensemble, spread comes from the differences in model physics, which results in larger spread in temperature and dewpoint temperature than the initial condition ensemble, and smaller spread in the wind fields. The combined initial condition and physics ensemble has properties from both of the previous two ensembles. It provides the largest spread and produces the best simulation for most of the variables, in terms of the rms difference between the ensemble mean and observations. Perhaps most importantly, this combined ensemble provides very good guidance on the mesoscale features important to the severe weather events of the day.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3