Trends in Snowfall versus Rainfall in the Western United States

Author:

Knowles Noah1,Dettinger Michael D.2,Cayan Daniel R.2

Affiliation:

1. U.S. Geological Survey, Menlo Park, California

2. U.S. Geological Survey, Menlo Park, and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract The water resources of the western United States depend heavily on snowpack to store part of the wintertime precipitation into the drier summer months. A well-documented shift toward earlier runoff in recent decades has been attributed to 1) more precipitation falling as rain instead of snow and 2) earlier snowmelt. The present study addresses the former, documenting a regional trend toward smaller ratios of winter-total snowfall water equivalent (SFE) to winter-total precipitation (P) during the period 1949–2004. The trends toward reduced SFE are a response to warming across the region, with the most significant reductions occurring where winter wet-day minimum temperatures, averaged over the study period, were warmer than −5°C. Most SFE reductions were associated with winter wet-day temperature increases between 0° and +3°C over the study period. Warmings larger than this occurred mainly at sites where the mean temperatures were cool enough that the precipitation form was less susceptible to warming trends. The trends toward reduced SFE/P ratios were most pronounced in March regionwide and in January near the West Coast, corresponding to widespread warming in these months. While mean temperatures in March were sufficiently high to allow the warming trend to produce SFE/P declines across the study region, mean January temperatures were cooler, with the result that January SFE/P impacts were restricted to the lower elevations near the West Coast. Extending the analysis back to 1920 shows that although the trends presented here may be partially attributable to interdecadal climate variability associated with the Pacific decadal oscillation, they also appear to result from still longer-term climate shifts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3