The Influence of Winter Snowpack on the Use of Summer Rains in Montane Pine Forests Across the Southwest U.S.

Author:

Bailey K.12ORCID,Szejner P.3ORCID,Strange Brandon12ORCID,Monson R. K.24ORCID,Hu Jia12

Affiliation:

1. School of Natural Resources and the Environment University of Arizona Tucson AZ USA

2. Laboratory of Tree Ring Research University of Arizona Tucson AZ USA

3. Bioeconomy and Environment Unit Natural Resources Institute Finland Helsinki Finland

4. Department of Evolutionary Biology University of Arizona Tucson AZ USA

Abstract

AbstractA two decade‐long megadrought, with likely anthropogenic causes, has impacted forest growth and mortality across the southwestern U.S. Given this event, and the future likelihood of similar climate challenges, it is important to understand how different water resources are used by semi‐arid forests in this region. Within the geographic domain of the North American Monsoon climate system, we studied seasonal water‐use in eight different Pinus ponderosa montane forests distributed across a climate gradient with varying contributions from winter and summer precipitation. We collected oxygen isotopes from precipitation, soil, and xylem water during two contrasting hydrologic years to determine how trees differentially use winter versus summer precipitation sources. Most trees switched from using snowmelt water as the primary source during the early‐summer hyper‐arid period, to monsoon rainwater during the late‐summer. However, during the low snowpack year, which represents the most common climate phenomenon during the megadrought, trees at all sites used less summer rain when compared to the higher snowpack year, demonstrating a drought‐induced antecedent influence of winter precipitation on the uptake of summer rain. A possible mechanism to explain the antecedent effect is an earlier snow disappearance during the low snowpack year weakening hydrologic connectivity within the soil profile, decreasing the soil infiltration of summer rains. However, in years with higher snowpack, the snow lasts longer, and this can improve the hydrologic connectivity within the soil profile. As a result, there is more infiltration of summer rains into the soils. This can enhance the maintenance of active shallow fine‐root biomass during the period when snowpack disappears, and monsoon rains have yet to arrive. These findings provide insight into how the seasonal interactions between major seasonal climate systems influence forest tree water use in the face of an extreme megadrought.

Funder

National Science Foundation

Division of Environmental Biology

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3