Short-Term Phenological Predictions of Vegetation Abundance Using Multivariate Adaptive Regression Splines in the Upper Colorado River Basin

Author:

Zhang Yuan1,Hepner George F.2

Affiliation:

1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

2. Department of Geography, University of Utah, Salt Lake City, Utah

Abstract

Abstract The accurate prediction of plant phenology is of significant importance for more sustainable and effective land management. This research develops a framework of phenological modeling to estimate vegetation abundance [indicated by the normalized difference vegetation index (NDVI)] 7 days into the future in the geographically diverse Upper Colorado River basin (UCRB). This framework uses phenological regions (phenoregions) as the basic units of modeling to account for the spatially variant environment–vegetation relationships. The temporal variation of the relationships is accounted for via the identification of phenological phases. The modeling technique of Multivariate Adaptive Regression Splines (MARS) is employed and tested as an approach to construct enhanced predictive phenological models in each phenoregion using a comprehensive set of environmental drivers and factors. MARS has the ability to deal with a large number of independent variables and to approximate complex relationships. The R2 values of the models range from 91.62% to 97.22%. The root-mean-square error values of all models are close to their respective standard errors ranging from 0.016 to 0.035, as indicated by the results of cross and field validations. These demonstrate that the modeling framework ensures the accurate prediction of short-term vegetation abundance in regions with various environmental conditions.

Funder

U.S. Bureau of Land Management

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3