Numerical Simulations of Two-Layer Flow past Topography. Part I: The Leeside Hydraulic Jump

Author:

Rotunno Richard1,Bryan George H.1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Laboratory observations of the leeside hydraulic jump indicate it consists of a statistically stationary turbulent motion in an overturning wave. From the point of view of the shallow-water equations (SWE), the hydraulic jump is a discontinuity in fluid-layer depth and velocity at which kinetic energy is dissipated. To provide a deeper understanding of the leeside hydraulic jump, three-dimensional numerical solutions of the Navier–Stokes equations (NSE) are carried out alongside SWE solutions for nearly identical physical initial-value problems. Starting from a constant-height layer flowing over a two-dimensional obstacle at constant speed, it is demonstrated that the SWE solutions form a leeside discontinuity owing to the collision of upstream-moving characteristic curves launched from the obstacle. Consistent with the SWE solution, the NSE solution indicates the leeside hydraulic jump begins as a steepening of the initially horizontal density interface. Subsequently, the NSE solution indicates overturning of the density interface and a transition to turbulence. Analysis of the initial-value problem in these solutions shows that the tendency to form either the leeside height–velocity discontinuity in the SWE or the overturning density interface in the exact NSE is a feature of the inviscid, nonturbulent fluid dynamics. Dissipative turbulent processes associated with the leeside hydraulic jump are a consequence of the inviscid fluid dynamics that initiate and maintain the locally unstable conditions.

Funder

National Center for Atmospheric Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3