A Method for Imposing Surface Stress and Heat Flux Conditions in Finite-Difference Models with Steep Terrain

Author:

Epifanio C. C.1

Affiliation:

1. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Abstract

Abstract A numerical implementation of the surface stress boundary condition is presented for finite-difference models in which the terrain slope and curvature cannot necessarily be considered small. The method involves reducing the discretized stress condition in terrain-following coordinates to a pair of coupled linear systems for the two horizontal velocity components at the boundary. The linear systems are then solved iteratively at each model time step to provide the unique boundary values of velocity consistent with the specified values of the stress. Similar methods are used to prescribe the normal flux of heat across the boundary. A related method for imposing stress conditions in two-dimensional vorticity–streamfunction models is also discussed. The effectiveness of the boundary conditions is demonstrated through a series of test problems involving topographic wake flows and thermally driven flows on steep slopes. It is shown that the use of the conventional flat-boundary approximation can lead to substantial errors when the resolved topography is sufficiently steep.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3