Affiliation:
1. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado
2. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
Abstract
Abstract
The mechanisms that lead to the propagation of anomalous moisture and moist static energy (MSE) in monsoon low and high pressure systems, collectively referred to as synoptic-scale monsoonal disturbances (SMDs), are investigated using daily output fields from GFDL’s atmospheric general circulation model, version 4.0 (AM4.0). On the basis of linear regression analysis of westward-propagating rainfall anomalies of time scales shorter than 15 days, it is found that SMDs are organized into wave trains of three to four individual cyclones and anticyclones. These events amplify over the Bay of Bengal, reach a maximum amplitude over the eastern coast of India, and dissipate as they approach the Arabian Sea. The structure and propagation of the simulated SMDs resemble those documented in observations. It is found that moisture and MSE anomalies exhibit similar horizontal structures in the simulated SMDs, indicating that moisture is the leading contributor to MSE. Propagation of the moisture anomalies is governed by vertical moisture advection, while the MSE anomalies propagate because of horizontal advection of dry static energy by the anomalous winds. By combining the budgets, we interpret the propagation of the moisture anomalies in terms of lifting that is forced by horizontal dry static energy advection, that is, ascent along sloping isentropes. This process moistens the lower free troposphere, producing an environment that is more favorable to deep convection. Ascent driven by radiative heating is of primary importance to the maintenance of the moisture anomalies.
Funder
National Oceanic and Atmospheric Administration
Publisher
American Meteorological Society
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献