Effect of Evaporating Sea Spray on Heat Fluxes in a Marine Atmospheric Boundary Layer

Author:

Rastigejev Yevgenii1,Suslov Sergey A.2

Affiliation:

1. North Carolina A&T State University, Greensboro, North Carolina

2. Swinburne University of Technology, Hawthorn, Victoria, Australia

Abstract

AbstractA detailed analysis of the evaporating ocean spray effect on the vertical latent and sensible heat fluxes in a marine atmospheric boundary layer (MABL) for different droplet sizes, vertical distributions of air temperature, humidity, and turbulent intensity is presented. For our analysis we have employed a two-temperature nonequilibrium MABL model developed in our previous work. The obtained analytical and numerical solutions show that the latent and total heat fluxes are significantly enhanced by large droplets because these droplets produce steep vertical gradients of moisture and air temperature in a MABL. Small droplets, however, do not noticeably change the total heat flux but rather redistribute the energy between its sensible and latent components. It has been shown that evaporating spray affects the turbulent kinetic energy (thus the intensity of the vertical turbulent transport) mostly mechanically by altering the vertical distribution of the mass density of the air–spray mixture rather than thermodynamically by changing vertical profiles of the air temperature and moisture. Furthermore, we have found that the vertical profiles of heat fluxes are approximately self-similar for a wide range of defining parameters, that is, can be approximately scaled to a reference heat profile for a wide range of vertical distributions of the temperature, humidity, and turbulence intensity. The obtained analytical expressions for the vertical heat fluxes affected by the spray presence enable their quick and efficient calculations. This will allow for the future construction of a computationally efficient spray and accurate parameterization to be used in global weather prediction models.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3