Implementation of a Geometrically Informed and Energetically Constrained Mesoscale Eddy Parameterization in an Ocean Circulation Model

Author:

Mak J.1,Maddison J. R.2,Marshall D. P.3,Munday D. R.4

Affiliation:

1. School of Mathematics, and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh, and Department of Physics, University of Oxford, Oxford, United Kingdom

2. School of Mathematics, and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh, United Kingdom

3. Department of Physics, University of Oxford, Oxford, United Kingdom

4. British Antarctic Survey, Cambridge, United Kingdom

Abstract

AbstractThe global stratification and circulation, as well as their sensitivities to changes in forcing, depend crucially on the representation of the mesoscale eddy field in a numerical ocean circulation model. Here, a geometrically informed and energetically constrained parameterization framework for mesoscale eddies—termed Geometry and Energetics of Ocean Mesoscale Eddies and Their Rectified Impact on Climate (GEOMETRIC)—is proposed and implemented in three-dimensional channel and sector models. The GEOMETRIC framework closes eddy buoyancy fluxes according to the standard Gent–McWilliams scheme but with the eddy transfer coefficient constrained by the depth-integrated eddy energy field, provided through a prognostic eddy energy budget evolving with the mean state. It is found that coarse-resolution models employing GEOMETRIC display broad agreement in the sensitivity of the circumpolar transport, meridional overturning circulation, and depth-integrated eddy energy pattern to surface wind stress as compared with analogous reference calculations at eddy-permitting resolutions. Notably, eddy saturation—the insensitivity of the time-mean circumpolar transport to changes in wind forcing—is found in the coarse-resolution sector model. In contrast, differences in the sensitivity of the depth-integrated eddy energy are found in model calculations in the channel experiments that vary the eddy energy dissipation, attributed to the simple prognostic eddy energy equation employed. Further improvements to the GEOMETRIC framework require a shift in focus from how to close for eddy buoyancy fluxes to the representation of eddy energetics.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3