The Modified Gamma Size Distribution Applied to Inhomogeneous and Nonspherical Particles: Key Relationships and Conversions

Author:

Petty Grant W.1,Huang Wei1

Affiliation:

1. University of Wisconsin—Madison, Madison, Wisconsin

Abstract

Abstract The four-parameter modified gamma distribution (MGD) is the most general mathematically convenient model for size distributions of particle types ranging from aerosols and cloud droplets or ice particles to liquid and frozen precipitation. The common three-parameter gamma distribution, the exponential distribution (e.g., Marshall–Palmer), and power-law distribution (e.g., Junge) are all special cases. Depending on the context, the particle “size” used in a given formulation may be the actual geometric diameter, the volume- or area-equivalent spherical diameter, the actual or equivalent radius, the projected or surface area, or the mass. For microphysical and radiative transfer calculations, it is often necessary to convert from one size representation to another, especially when comparing or utilizing distribution parameters obtained from a variety of sources. Furthermore, when the mass scales with Db, with b < 3, as is typical for snow and ice and other particles having a quasi-fractal structure, an exponential or gamma distribution expressed in terms of one size parameter becomes an MGD when expressed in terms of another. The MGD model is therefore more fundamentally relevant to size distributions of nonspherical particles than is often appreciated. The central purpose of this paper is to serve as a concise single-source reference for the mathematical properties of, and conversions between, atmospheric particle size distributions that can expressed as MGDs, including exponential and gamma distributions as special cases. For illustrative purposes, snow particle size distributions published by Sekhon and Srivastava, Braham, and Field et al. are converted to a common representation and directly compared for identical snow water content, allowing large differences in their properties to be discerned and quantified in a way that is not as easily achieved without such conversion.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3