Numerical Simulation of Wave Breaking

Author:

Irisov Vladimir1,Voronovich Alexander2

Affiliation:

1. Zel Technologies, LLC, and NOAA, Boulder, Colorado

2. NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Abstract

AbstractThe wave breaking events in a continuous spectrum of surface gravity waves are investigated numerically in 2D within a framework of the potential motion model. It is claimed that the major physical mechanism leading to wave breaking is “squeezing” of relatively short waves by the surface currents due to longer waves (the “concertina” effect), which causes the shorter waves to steepen and become unstable. It is demonstrated that locations of the breaking events are well correlated with the maximum of local current convergence, although slightly worse correlation of the locations with the local steepness of undulating surface cannot reliably exclude the latter mechanism either. It is found also that the breaking events are very rare for random surfaces with a root-mean-square (RMS) current gradient below a threshold value of about 1 s−1.The process of wave breaking was investigated by two numerical codes. One of them is based on approximation of continuous media with a discrete Hamiltonian system, which can be integrated in time very efficiently and accurately but is limited to single-valued profiles. The other is the Laplacian approach, which can explicitly exhibit the overturning of plunging breakers. Study of the discrete system shows that wave breaking is associated with the explosive growth of a certain spatially localized mode of the system.

Publisher

American Meteorological Society

Subject

Oceanography

Reference39 articles.

1. Predicting the breaking onset of surface water waves.;Babanin;Geophys. Res. Lett.,2007

2. Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water.;Babanin;J. Fluid Mech.,2010

3. A laboratory study of nonlinear surface waves on water.;Baldock;Philos. Trans. Roy. Soc. London,1996

4. Wave breaking in deep water.;Banner;Annu. Rev. Fluid Mech.,1993

5. On the determination of the onset of breaking for modulating surface gravity water waves.;Banner;J. Fluid Mech.,1998

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3