Global Climate and Ocean Circulation on an Aquaplanet Ocean–Atmosphere General Circulation Model

Author:

Smith Robin S.1,Dubois Clotilde2,Marotzke Jochem3

Affiliation:

1. Southampton Oceanography Centre, Southampton, United Kingdom, and Max-Planck Institute for Meteorology, Hamburg, Germany

2. Southampton Oceanography Centre, Southampton, United Kingdom

3. Max-Planck Institute for Meteorology, Hamburg, Germany

Abstract

Abstract A low-resolution coupled ocean–atmosphere general circulation model (OAGCM) is used to study the characteristics of the large-scale ocean circulation and its climatic impacts in a series of global coupled aquaplanet experiments. Three configurations, designed to produce fundamentally different ocean circulation regimes, are considered. The first has no obstruction to zonal flow, the second contains a low barrier that blocks zonal flow in the ocean at all latitudes, creating a single enclosed basin, while the third contains a gap in the barrier to allow circumglobal flow at high southern latitudes. Warm greenhouse climates with a global average air surface temperature of around 27°C result in all cases. Equator-to-pole temperature gradients are shallower than that of a current climate simulation. While changes in the land configuration cause regional changes in temperature, winds, and rainfall, heat transports within the system are little affected. Inhibition of all ocean transport on the aquaplanet leads to a reduction in global mean surface temperature of 8°C, along with a sharpening of the meridional temperature gradient. This results from a reduction in global atmospheric water vapor content and an increase in tropical albedo, both of which act to reduce global surface temperatures. Fitting a simple radiative model to the atmospheric characteristics of the OAGCM solutions suggests that a simpler atmosphere model, with radiative parameters chosen a priori based on the changing surface configuration, would have produced qualitatively different results. This implies that studies with reduced complexity atmospheres need to be guided by more complex OAGCM results on a case-by-case basis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference49 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3