Meridional Heat Transport in the DeepMIP Eocene Ensemble: Non‐CO2 and CO2 Effects

Author:

Kelemen Fanni Dora1ORCID,Steinig Sebastian2ORCID,de Boer Agatha3ORCID,Zhu Jiang4ORCID,Chan Wing‐Le56ORCID,Niezgodzki Igor78ORCID,Hutchinson David K.9ORCID,Knorr Gregor8ORCID,Abe‐Ouchi Ayako5ORCID,Ahrens Bodo1ORCID

Affiliation:

1. Institute for Atmospheric and Environmental Sciences Goethe University Frankfurt Frankfurt am Main Germany

2. School of Geographical Sciences University of Bristol Bristol UK

3. Department of Geological Sciences Bolin Centre for Climate Research Stockholm University Stockholm Sweden

4. Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA

5. AORI The University of Tokyo Kashiwa Japan

6. Research Center for Environmental Modeling and Application JAMSTEC Yokohama Japan

7. ING PAN—Institute of Geological Sciences Polish Academy of Sciences Research Center in Kraków Biogeosystem Modelling Group Kraków Poland

8. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany

9. Climate Change Research Centre University of New South Wales Sydney Sydney NSW Australia

Abstract

AbstractThe total meridional heat transport (MHT) is relatively stable across different climates. Nevertheless, the strength of individual processes contributing to the total transport are not stable. Here we investigate the MHT and its main components especially in the atmosphere, in five coupled climate model simulations from the Deep‐Time Model Intercomparison Project (DeepMIP). These simulations target the early Eocene climatic optimum, a geological time period with high CO2 concentrations, analog to the upper range of end‐of‐century CO2 projections. Preindustrial and early Eocene simulations, at a range of CO2 levels are used to quantify the MHT changes in response to both CO2 and non‐CO2 related forcings. We found that atmospheric poleward heat transport increases with CO2, while oceanic poleward heat transport decreases. The non‐CO2 boundary conditions cause more MHT toward the South Pole, mainly through an increase in the southward oceanic heat transport. The changes in paleogeography increase the heat transport via transient eddies at the northern mid‐latitudes in the Eocene. The Eocene Hadley cells do not transport more heat poleward, but due to the warmer atmosphere, especially the northern cell, circulate more heat in the tropics, than today. The monsoon systems' poleward latent heat transport increases with rising CO2 concentrations, but this change is counterweighted by the globally smaller Eocene monsoon area. Our results show that the changes in the monsoon systems' latent heat transport is a robust feature of CO2 warming, which is in line with the currently observed precipitation increase of present day monsoon systems.

Funder

Hessisches Ministerium für Wissenschaft und Kunst

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3