Fruit development and capsaicin content of hot pepper (Capsicum annuum) plant cultivated in different soil salinity stress

Author:

PURNAMA PURIN CANDRA,SUMARDI ISSIREP,NUGROHO L. HARTANTO

Abstract

Abstract. Purnama PC, Sumardi I, Nugroho LH. 2022. Fruit development and capsaicin content of hot pepper (Capsicum annuum) plant cultivated in different soil salinity stress. Nusantara Bioscience 14: 166-171. Land scarcity for cropping at Java Island is a challenge for scientists to look for alternative cropping land. The use of saline land for cropping needs to have further discussed. Red pepper (Capsicum annuum L.) can be used as a plant model because, aside from being used as a vegetable, it is also used as natural medicine because of its secondary metabolite, capsaicin. A harsh environment could induce changes in the primary metabolism, which leads to secondary metabolite decomposition. For example, plants respond to stress, such as salt stress, by synthesizing flavonoids and phenolic acid as defense systems to reduce damage. However, the total sugar level and organic acids are decreased. This research aimed to study the fruit development and capsaicin content of hot pepper grown on various coastal soil sand to know whether or not different growth medium affects the size of each part of the fruit. The design of this research was a Completely Randomized Block Design (CRBD). In this research, five different salinity mediums were used, they were A. 15.20 dS/m, B. 5.70 dS/m, C.1.10 dS/m, and D. 2.85 dS/m obtained from Pandansimo and E. 3.25 dS/m obtained from Sleman, Yogyakarta, Indonesia, as comparation. Seedlings were transferred to the polybag after having four truly expanded leaves. Fruit development was observed every week, starting from the first day after flowering (DAF) to 35 DAF. Pericarpium and placenta thickness, fruit diameter, number, length, and width of the giant cell were recorded appropriately from the slides prepared using the paraffin method. Capsaicin content was determined at 14 and 35 DAF, performed with Gas Chromatography-Mass Spectrometry (GC-MS). The results show structural changes in the exocarpium; on the first day after flowering, there was only one layer of epidermis cells, but at 7 DAF, there was one layer of epidermis cells and one layer of collenchyma cells. Next, at 14 DAF, one layer of epidermis cells and two layers of collenchyma cells are observed. The structure of the mesocarpium, endocarpium, and placenta were not changed. The capsaicin content of the green fruit (14 DAF) was lower than the mature one (35 DAF) in all survival mediums. The highest capsaicin content at 14 and 35 DAF was obtained from a plant grown at medium C. Different growing mediums affected pericarpium and placenta thickness, number, length, and width of the giant cell fruit diameter.

Publisher

UNS Solo

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3