Biosynthesis of capsaicinoids in pungent peppers under salinity stress

Author:

Shams Mostafakamal1ORCID,Yuksel Esra Arslan2,Agar Guleray3,Ekinci Melek4ORCID,Kul Raziye4,Turan Metin5,Yildirim Ertan4ORCID

Affiliation:

1. Department of Plant Physiology and Biotechnology, Faculty of Biology University of Gdansk Gdansk Poland

2. Department of Biotechnology, Faculty of Agriculture Atatürk University Erzurum 25240 Turkey

3. Department of Biology, Faculty of Science Atatürk University Erzurum 25240 Turkey

4. Department of Horticulture, Faculty of Agriculture Atatürk University Erzurum 25240 Turkey

5. Department of Genetic and Bioengineering Yeditepe University Istanbul Turkey

Abstract

AbstractThe synthesis of capsaicinoids occurs in the placenta of the fruits of pungent peppers. However, the mechanism of capsaicinoids' biosynthesis in pungent peppers under salinity stress conditions is unknown. The Habanero and Maras genotypes, the hottest peppers in the world, were chosen as plant material for this study, and they were grown under normal and salinity (5 dS m−1) conditions. The results showed that salinity stress harmed plant growth but increased the capsaicin content by 35.11% and 37.00%, as well as the dihydrocapsaicin content by 30.82% and 72.89% in the fruits of the Maras and Habanero genotypes, respectively, at 30 days after planting. The expression analysis of key genes in capsaicinoids biosynthesis revealed that the PAL1, pAMT, KAS, and PUN1 genes were overexpressed in the vegetative and reproductive organs of pungent peppers under normal conditions. However, under salinity stress, overexpression of PAL1, pAMT, and PUN1 genes was identified in the roots of both genotypes, which was accompanied by an increase in capsaicin and dihydrocapsaicin content. The findings showed that salinity stress caused an enhancement in the capsaicin and dihydrocapsaicin contents in the roots, leaves, and fruits of pungent peppers. Nonetheless, it was found that the production of capsaicinoids is generally not restricted to the fruits of pungent peppers.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3