Lack of JunD Promotes Pressure Overload–Induced Apoptosis, Hypertrophic Growth, and Angiogenesis in the Heart

Author:

Hilfiker-Kleiner Denise1,Hilfiker Andres1,Kaminski Karol1,Schaefer Arnd1,Park Joon-Keun1,Michel Kim1,Quint Anja1,Yaniv Moshe1,Weitzman Jonathan B.1,Drexler Helmut1

Affiliation:

1. From the Departments of Cardiology and Angiology (D.H.-K., K.K., A.S., K.M., A.Q., H.D.), Cardiovascular Surgery (A.H.), and Nephrology (J.P.), Hannover Medical School, Hannover, Germany; and Unit of Gene Expression and Disease, Pasteur Institute, Paris, France (M.Y., J.B.W.).

Abstract

Background— The Jun family of activator protein 1 (AP-1) transcription factors (c-Jun, JunB, and JunD) is involved in fundamental biological processes such as proliferation, apoptosis, tumor angiogenesis, and hypertrophy. The role of individual AP-1 transcription factors in the stressed heart is not clear. In the present study we analyzed the role of JunD in survival, hypertrophy, and angiogenesis in the pressure-overloaded mouse heart after thoracic aortic constriction. Methods and Results— Mice lacking JunD (knockout [KO]) showed increased mortality and enhanced cardiomyocyte apoptosis and fibrosis associated with increased levels of hypoxia-induced factor-1α, vascular endothelial growth factor (VEGF), p53, and Bax protein and reduced levels of Bcl-2 protein after 7 days of severe pressure overload compared with wild-type (WT) siblings. Cardiomyocyte hypertrophy in surviving KO mice was enhanced compared with that in WT mice. Chronic moderate pressure overload for 12 weeks caused enhanced left ventricular hypertrophy in KO mice, and survival and interstitial fibrosis were comparable with WT mice. Cardiac function, 12 weeks after operation, was comparable among shams and pressure-overloaded mice of both genotypes. In addition, KO mice exposed to chronic pressure overload showed higher cardiac capillary density associated with increased protein levels of VEGF. Conclusions— Thus, JunD limits cardiomyocyte hypertrophy and protects the pressure-overloaded heart from cardiac apoptosis. These beneficial effects of JunD, however, are associated with antiangiogenic properties.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3