Integrated analysis of single-cell RNA sequencing and bulk RNA data reveals gene regulatory networks and targets in dilated cardiomyopathy

Author:

Zhang Min,Zhang Xin,Niu Jiayin,Hua Cuncun,Liu Pengfei,Zhong Guangzhen

Abstract

AbstractDilated cardiomyopathy (DCM) is a common cause of heart failure, thromboembolism, arrhythmias, and sudden cardiac death. The quality of life and long-term survival rates of patients with dilated DCM have greatly improved in recent decades. Nevertheless, the clinical prognosis for DCM patients remains unfavorable. The primary driving factors underlying the pathogenesis of DCM remain incompletely understood. The present study aimed to identify driving factors underlying the pathogenesis of DCM from the perspective of gene regulatory networks. Single-cell RNA sequencing data and bulk RNA data were obtained from the Gene Expression Omnibus (GEO) database. Differential gene analysis, single-cell genomics analysis, and functional enrichment analysis were conducted using R software. The construction of Gene Regulatory Networks was performed using Python. We used the pySCENIC method to analyze the single-cell data and identified 401 regulons. Through variance decomposition, we selected 19 regulons that showed significant responsiveness to DCM. Next, we employed the ssGSEA method to assess regulons in two bulk RNA datasets. Significant statistical differences were observed in 9 and 13 regulons in each dataset. By intersecting these differentiated regulons and identifying shared targets that appeared at least twice, we successfully pinpointed three differentially expressed targets across both datasets. In this study, we assessed and identified 19 gene regulatory networks that were responsive to the disease. Furthermore, we validated these networks using two bulk RNA datasets of DCM. The elucidation of dysregulated regulons and targets (CDKN1A, SAT1, ZFP36) enhances the molecular understanding of DCM, aiding in the development of tailored therapies for patients.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3