Complex Interactions Between the Sinoatrial Node and Atrium During Reentrant Arrhythmias in the Canine Heart

Author:

Fedorov Vadim V.1,Chang Roger1,Glukhov Alexey V.1,Kostecki Geran1,Janks Deborah1,Schuessler Richard B.1,Efimov Igor R.1

Affiliation:

1. From the Department of Biomedical Engineering (V.V.F., R.C., A.V.G., G.K., D.J., I.R.E.), Washington University; and Division of Cardiothoracic Surgery (R.B.S.), Washington University School of Medicine, St. Louis, Mo.

Abstract

Background— Numerous studies implicate the sinoatrial node (SAN) as a participant in atrial arrhythmias, including atrial flutter (AFL) and atrial fibrillation (AF). However, the direct role of the SAN has never been described. Methods and Results— The SAN was optically mapped in coronary perfused preparations from normal canine hearts (n=17). Optical action potentials were recorded during spontaneous rhythm, overdrive atrial pacing, and AF/AFL induced by acetylcholine (ACh; 0.3 to 3 μmol/L) and/or isoproterenol (Iso; 0.2 to 1 μmol/L). An optical action potential multiple component algorithm and dominant frequency analysis were used to reconstruct SAN activation and to identify specialized sinoatrial conduction pathways. Both ACh and Iso facilitated pacing-induced AF/AFL by shortening atrial repolarization. The entire SAN structure created a substrate for macroreentry with 9.6±1.7 Hz (69 episodes in all preparations). Atrial excitation waves could enter the SAN through the sinoatrial conduction pathways and overdrive suppress the node. The sinoatrial conduction pathways acted as a filter for atrial waves by slowing conduction and creating entrance block. ACh/Iso modulated filtering properties of the sinoatrial conduction pathways by increasing/decreasing the degree of the entrance block, respectively. Thus, the SAN could beat independently from AF/AFL reentrant activity during ACh (49±39%) and ACh/Iso (62±25%) ( P =0.38). Without ACh, the AF/AFL waves captured the SAN and overdrive suppressed it. Spontaneous SAN activity could terminate or convert AFL to AF during cholinergic withdrawal. Conclusions— The specialized structure of the SAN can be a substrate for AF/AFL. Cholinergic stimulation not only can slow sinus rhythm and facilitate AF/AFL but also protects the intrinsic SAN function from the fast AF/AFL rhythm.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3