Affiliation:
1. Department of Clinical Sciences, College of Veterinary Medicine Cornell University Ithaca New York USA
2. Section of Cardiology, Department of Clinical Sciences, College of Veterinary Medicine Cornell University Ithaca New York USA
3. School of Mathematical Sciences Rochester Institute of Technology Rochester New York USA
Abstract
AbstractBackgroundSinus node dysfunction because of abnormal impulse generation or sinoatrial conduction block causes bradycardia that can be difficult to differentiate from high parasympathetic/low sympathetic modulation (HP/LSM).HypothesisBeat‐to‐beat relationships of sinus node dysfunction are quantifiably distinguishable by Poincaré plots, machine learning, and 3‐dimensional density grid analysis. Moreover, computer modeling establishes sinoatrial conduction block as a mechanism.AnimalsThree groups of dogs were studied with a diagnosis of: (1) balanced autonomic modulation (n = 26), (2) HP/LSM (n = 26), and (3) sinus node dysfunction (n = 21).MethodsHeart rate parameters and Poincaré plot data were determined [median (25%‐75%)]. Recordings were randomly assigned to training or testing. Supervised machine learning of the training data was evaluated with the testing data. The computer model included impulse rate, exit block probability, and HP/LSM.ResultsConfusion matrices illustrated the effectiveness in diagnosing by both machine learning and Poincaré density grid. Sinus pauses >2 s differentiated (P < .0001) HP/LSM (2340; 583‐3947 s) from sinus node dysfunction (8503; 7078‐10 050 s), but average heart rate did not. The shortest linear intervals were longer with sinus node dysfunction (315; 278‐323 ms) vs HP/LSM (260; 251‐292 ms; P = .008), but the longest linear intervals were shorter with sinus node dysfunction (620; 565‐698 ms) vs HP/LSM (843; 799‐888 ms; P < .0001).ConclusionsNumber and duration of pauses, not heart rate, differentiated sinus node dysfunction from HP/LSM. Machine learning and Poincaré density grid can accurately identify sinus node dysfunction. Computer modeling supports sinoatrial conduction block as a mechanism of sinus node dysfunction.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Non-Invasive Cardiac Poincare Analysis Based on Fiber Interferometer;2024 22nd International Conference on Optical Communications and Networks (ICOCN);2024-07-26